Introduction xvii 
Chapter 1 Introduction to Big Data Analytics1 
1.1 Big Data Overview 2 
1.1.1 Data Structures 5 
1.1.2 Analyst Perspective on Data Repositories 9 
1.2 State of the Practice in Analytics 11 
1.2.1 BI Versus Data Science 12 
1.2.2 Current Analytical Architecture 13 
1.2.3 Drivers of Big Data 15 
1.2.4 Emerging Big Data Ecosystem and a New Approach toAnalytics 16 
1.3 Key Roles for the New Big Data Ecosystem 19 
1.4 Examples of Big Data Analytics 22 
Summary 23 
Exercises 23 
Bibliography 24 
Chapter 2 Data Analytics Lifecycle 25 
2.1 Data Analytics Lifecycle Overview 26 
2.1.1 Key Roles for a Successful Analytics Project 26 
2.1.2 Background and Overview of Data Analytics Lifecycle 28 
2.2 Phase 1: Discovery 30 
2.2.1 Learning the Business Domain 30 
2.2.2 Resources 31 
2.2.3 Framing the Problem 32 
2.2.4 Identifying Key Stakeholders 33 
2.2.5 Interviewing the Analytics Sponsor 33 
2.2.6 Developing Initial Hypotheses 35 
2.2.7 Identifying Potential Data Sources 35 
2.3 Phase 2: Data Preparation 36 
2.3.1 Preparing the Analytic Sandbox 37 
2.3.2 Performing ETLT 38 
2.3.3 Learning About the Data 39 
2.3.4 Data Conditioning 40 
2.3.5 Survey and Visualize 41 
2.3.6 Common Tools for the Data Preparation Phase 42 
2.4 Phase 3: Model Planning 42 
2.4.1 Data Exploration and Variable Selection 44 
2.4.2 Model Selection 45 
2.4.3 Common Tools for the Model Planning Phase 45 
2.5 Phase 4: Model Building 46 
2.5.1 Common Tools for the Model Building Phase 48 
2.6 Phase 5: Communicate Results 49 
2.7 Phase 6: Operationalize 50 
2.8 Case Study: Global Innovation Network and Analysis (GINA)53 
2.8.1 Phase 1: Discovery 54 
2.8.2 Phase 2: Data Preparation 55 
2.8.3 Phase 3: Model Planning 56 
2.8.4 Phase 4: Model Building 56 
2.8.5 Phase 5: Communicate Results 58 
2.8.6 Phase 6: Operationalize 59 
Summary 60 
Exercises 61 
Bibliography 61 
Chapter 3 Review of Basic Data Analytic Methods UsingR 63 
3.1 Introduction to R 64 
3.1.1 R Graphical User Interfaces 67 
3.1.2 Data Import and Export 69 
3.1.3 Attribute and Data Types 71 
3.1.4 Descriptive Statistics 79 
3.2 Exploratory Data Analysis 80 
3.2.1 Visualization Before Analysis 82 
3.2.2 Dirty Data 85 
3.2.3 Visualizing a Single Variable 88 
3.2.4 Examining Multiple Variables 91 
3.2.5 Data Exploration Versus Presentation 99 
3.3 Statistical Methods for Evaluation 101 
3.3.1 Hypothesis Testing 102 
3.3.2 Difference of Means 104 
3.3.3 Wilcoxon Rank-Sum Test 108 
3.3.4 Type I and Type II Errors 109 
3.3.5 Power and Sample Size 110 
3.3.6 ANOVA 110 
Summary 114 
Exercises 114 
Bibliography115 
Chapter 4 Advanced Analytical Theory and Methods:Clustering 117 
4.1 Overview of Clustering 118 
4.2 K-means 118 
4.2.1 Use Cases 119 
4.2.2 Overview of the Method 120 
4.2.3 Determining the Number of Clusters 123 
4.2.4 Diagnostics 128 
4.2.5 Reasons to Choose and Cautions 130 
4.3 Additional Algorithms 134 
Summary 135 
Exercises 135 
Bibliography 136 
Chapter 5 Advanced Analytical Theory and Methods:Association Rules 137 
5.1 Overview 138 
5.2 Apriori Algorithm 140 
5.3 Evaluation of Candidate Rules 141 
5.4 Applications of Association Rules 143 
5.5 An Example: Transactions in a Grocery Store 143 
5.5.1 The Groceries Dataset 144 
5.5.2 Frequent Itemset Generation 146 
5.5.3 Rule Generation and Visualization 152 
5.6 Validation and Testing 157 
5.7 Diagnostics 158 
Summary 158 
Exercises 159 
Bibliography 160 
Chapter 6 Advanced Analytical Theory and Methods:Regression 161 
6.1 Linear Regression 162 
6.1.1 Use Cases 162 
6.1.2 Model Description 163 
6.1.3 Diagnostics 173 
6.2 Logistic Regression178 
6.2.1 Use Cases 179 
6.2.2 Model Description 179 
6.2.3 Diagnostics 181 
6.3 Reasons to Choose and Cautions 188 
6.4 Additional Regression Models 189 
Summary 190 
Exercises 190 
Chapter 7 Advanced Analytical Theory and Methods:Classification 191 
7.1 Decision Trees 192 
7.1.1 Overview of a Decision Tree 193 
7.1.2 The General Algorithm 197 
7.1.3 Decision Tree Algorithms 203 
7.1.4 Evaluating a Decision Tree 204 
7.1.5 Decision Trees in R 206 
7.2 Naive Bayes 211 
7.2.1 Bayes Theorem 212 
7.2.2 Naive Bayes Classifier 214 
7.2.3 Smoothing 217 
7.2.4 Diagnostics 217 
7.2.5 Naive Bayes in R 218 
7.3 Diagnostics of Classifiers 224 
7.4 Additional Classification Methods 228 
Summary 229 
Exercises 230 
Bibliography 231 
Chapter 8 Advanced Analytical Theory and Methods:Time Series Analysis 233 
8.1 Overview of Time Series Analysis 234 
8.1.1 Box-Jenkins Methodology 235 
8.2 ARIMA Model 236 
8.2.1 Autocorrelation Function (ACF) 236 
8.2.2 Autoregressive Models 238 
8.2.3 Moving Average Models 239 
8.2.4 ARMA and ARIMA Models 241 
8.2.5 Building and Evaluating an ARIMA Model 244 
8.2.6 Reasons to Choose and Cautions 252 
8.3 Additional Methods 253 
Summary 254 
Exercises 254 
Chapter 9 Advanced Analytical Theory and Methods:Text Analysis 255 
9.1 Text Analysis Steps 257 
9.2 A Text Analysis Example 259 
9.3 Collecting Raw Text 260 
9.4 Representing Text 264 
9.5 Term Frequency Inverse Document Frequency (TFIDF)269 
9.6 Categorizing Documents by Topics 274 
9.7 Determining Sentiments 277 
9.8 Gaining Insights 283 
Summary 290 
Exercises 290 
Bibliography 291 
Chapter 10 Advanced Analytics Technology andTools: MapReduce and Hadoop 295 
10.1 Analytics for Unstructured Data 296 
10.1.1 Use Cases 296 
10.1.2 MapReduce 298 
10.1.3 Apache Hadoop 300 
10.2 The Hadoop Ecosystem 306 
10.2.1 Pig 306 
10.2.2 Hive 308 
10.2.3 HBase 311 
10.2.4 Mahout 319 
10.3 NoSQL 322 
Summary 323 
Exercises 324 
Bibliography 324 
Chapter 11 Advanced Analytics Technology andTools: In-Database Analytics 327 
11.1 SQL Essentials 328 
11.1.1 Joins 330 
11.1.2 Set Operations 332 
11.1.3 Grouping Extensions 334 
11.2 In-Database Text Analysis 338 
11.3 Advanced SQL 343 
11.3.1 Window Functions 343 
11.3.2 User-Defined Functions and Aggregates 347 
11.3.3 Ordered Aggregates 351 
11.3.4 MADlib 352 
Summary 356 
Exercises 356 
Bibliography 357 
Chapter 12 The Endgame, or Putting It All Together359 
12.1 Communicating and Operationalizing an AnalyticsProject 360 
12.2 Creating the Final Deliverables 362 
12.2.1 Developing Core Material for Multiple Audiences 364 
12.2.2 Project Goals 365 
12.2.3 Main Findings 367 
12.2.4 Approach 369 
12.2.5 Model Description 371 
12.2.6 Key Points Supported with Data 372 
12.2.7 Model Details 372 
12.2.8 Recommendations 374 
12.2.9 Additional Tips on Final Presentation 375 
12.2.10 Providing Technical Specifications and Code 376 
12.3 Data Visualization Basics 377 
12.3.1 Key Points Supported with Data 378 
12.3.2 Evolution of a Graph 380 
12.3.3 Common Representation Methods 386 
12.3.4 How to Clean Up a Graphic 387 
12.3.5 Additional Considerations 392 
Summary 393 
Exercises 394 
References and Further Reading 394 
Bibliography 394 
Index 397